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Further understanding of the double-injection (DI) mechanism of current flow in insulators has been ob
tained from a theoretical treatment, largely based on a theory by Lampert, which allows an arbitrary ther
mal-equilibrium occupancy of the recombination centers and also shallow trapping of both carriers. The 
major new results are: (1) The existence of a negative-resistance region in the DI current-voltage char
acteristic is a consequence of difficulty in neutralizing the space charge due to one carrier type by transport 
of the other, i.e., of unequal lifetimes in the absence of trapping. (2) The threshold voltage for DI current flow 
with space-charge neutrality is infinite if the centers are not completely filled in the absence of injected 
carriers. The low-level regions of the characteristics for initially completely filled or initially partly filled 
centers are very different. (3) The relative "effectiveness" of holeand electron traps in storing carriers is an 
important factor because of the space charge which can be stored in them and which has to be neutralized by 
carriers of the other type. 

1. INTRODUCTION 

BECAUSE of the very low thermally generated 
carrier densities in insulating solids, the mecha

nism of current flow by the simultaneous injection of 
both holes and electrons is important in such materials. 
Injection of the two carriers into the crystal bulk allows 
a relatively high density of carriers to be attained for 
conduction purposes. 

Parmenter and Ruppel,1 Lampert,2 and Lampert and 
Rose3 have carried out theoretical studies of drift-
controlled double-injection currents in the case in which 
holes and electrons have the same lifetime. Lampert4 

has considered the case of an insulator with recom
bination centers, so that the hole and electron lifetimes 
may be different. This treatment neglected the existence 
of any space charge and made the assumption that the 
centers are completely filled in the absence of injected 
carriers, i.e., at thermal equilibrium. I t was concluded 
that, (a) there was a finite nonzero threshold voltage 
for double-injection (DI) current flow, (b) if the capture 
cross section of the centers for holes was very much 
greater than their cross section for electrons, there was 
a negative-resistance region in the DI current-voltage 
characteristic and, (c) at higher currents the character
istic becomes similar to that in an ^-type semiconductor, 
considered by Lampert and Rose.3 

A previous article5 reported an analysis based on the 
theory of Lampert,4 which considered the more general 
case of centers partly filled at thermal equilibrium. This 
treatment showed that when the density of holes in the 
recombination centers at thermal equilibrium is non
zero, the voltage threshold for D I current flow with 
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space-charge neutrality becomes infinite. I t was also 
reported that this analysis demonstrated that the 
existence of the negative-resistance region depends on 
unequal carrier lifetimes rather than on unequal carrier 
capture cross sections of the centers. 

I t is proposed to report in this article the analysis for 
the more general case of centers partly filled in the 
absence of injected carriers. The effect of shallow hole 
and electron traps will also be considered. 

2. THE BASIC PHYSICS OF DOUBLE-INJECTION 
IN INSULATORS WITHOUT TRAPPING 

The low thermal-equilibrium carrier densities in 
insulators result in conductivities which are very low 
without carrier injection. Because of the long dielectric 
relaxation time associated with the low conductivity, 
local space charge may exist in the insulator bulk. Thus 
majority carriers may be injected into the solid to in
crease the free majority carrier density and thereby 
increase the conductivity. However, there is a limit to 
the net space charge injected at a given voltage. This 
is given roughly by the expression Q=CV, where C is 
the capacitance and V the voltage, so that the current 
is limited. If, however, both electrons and holes can be 
injected and transported easily across the crystal, then 
both free-carrier densities can be increased markedly 
despite the limit on Q. Thus, assuming no limitation on 
carrier injection from the electrodes, any limitation on 
the D I current is due to difficulty in transporting one or 
more of the carriers across the crystal, due to recom
bination. For example, if the hole lifetime is very much 
shorter than the electron lifetime, then the limitation 
arises because very few holes can be transported across 
the recombination "barrier" in the bulk to maintain 
quasineutrality at the electron-injecting contact. 

However, once a hole current begins to flow, the hole 
density in the centers increases because of the shorter 
lifetime. Thus, the hole lifetime increases. This allows 
an increased flow of holes and a further increase in life-
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time, and so on, which gives rise to the negative resist
ance region reported by Lampert.4 The negative-
resistance region continues until the two carrier life
times become equal when further increase in the hole 
lifetime becomes impossible. At currents above this, the 
limitation on the DI current is due to the presence of 
the same recombination "barrier" to both carriers and, 
since the lifetimes are equal, the characteristic is similar 
to the characteristic obtained by Lampert and Rose3 

with the assumption of equal lifetimes. I t is to be noted 
that analogous behavior is to be expected if the low-
level electron lifetime is very much shorter than the 
low-level hole lifetime. 

3. THEORY 

The model on which this work is based is a somewhat 
generalized form of that used by Lampert.4 I t is assumed 
that only one set of recombination centers exists in the 
insulator and that its occupancy under DI conditions 
is determined entirely by recombination kinetics. The 
Fermi occupation probability for the centers at thermal 
equilibrium, FR, has the range 0 ̂  FR ^ 1; the case 
FR=1 has already been considered.4 Recombination by 
interband transitions is assumed to be negligible. The 
model includes shallow electron and hole traps which 
are always more than a few kT away from the quasi-
Fermi levels. The other assumptions made in Sec. I I 
of the article by Lampert4 are also made here: (1) charge 
neutrality everywhere, (2) volume-controlled current 
flow, (3) negligible diffusion currents, (4) field-inde
pendent mobility, (5) negligible thermal free-carrier 
densities. The comments on these assumptions made by 
Lampert4 will not be enlarged upon here although the 
effect of assumption (1) on the characteristics will be 
discussed below. 

The recombination kinetics for the present model are 
identical with those for the model used by Lampert: 

r=p(vap)nR = n{v(7n)pR, 

nB+pB = NB. (1) 

Here, r is the recombination rate density, (van) and 
(vorp), are the suitably averaged products of thermal 
velocity and capture cross section of the centers for 
electrons and holes, respectively; %R and pR are the 
electron and hole densities in the centers, NR is the 
density of centers and n, p are the densities of injected 
free carriers. 

From (1) 

PB=NB/(PU+1), 

where 

u=n/p and j3=(van)/(vap). (2) 

I t is now necessary to write down a suitable neutrality 
equation. The density of injected electrons trapped in 
the shallow states close to, and in equilibrium with, the 

conduction band may be written as n"qn where 

Nti 
1 ? » = E — exp(Ei/kT) 

i Nc 

and Nu and E{ are the density and ionization energy 
of the ith set of such traps and Nc is the density of 
states in the conduction band. The summation is over 
all sets of such traps. Similarly, the density of injected 
holes trapped in states close to, and in equilibrium with, 
the valence band may be written as p-rjPy where 

and Ntj and Ej are the density and hole ionization 
energy of the j t h set of such traps and Nv is the density 
of states in the valence band. Thus, our neutrality is 
written as: 

n(l+Vn)-p(l+rip)+pR0-pR = 0, (3) 

where pR$ is the hole density in the centers in the 
absence of injected carriers (i.e., at thermal equilib
rium). This is to be compared with Lampert's neutrality 
equation: 

n—p—pR = 0, 

where the centers are completely filled at thermal equi
librium (i.e., PRO= 0) and there are no traps (rfn=rjp= 0). 
Substituting (2) in (3) 

NB-pRo(Pu+l) 1+VP 

pNB(l-FB) y-u 
= • • , ( 4 ) 

if 7 = (NR-pRo)/l3pRo=rno/Tpo7 where rw0, rp0 are the 
low-injection-level values of the carrier lifetimes, defined 
as l/Tn=(v(rn)pR and l/rp=(vcrp)nR. FR is, of course, 
given by nRo/NR= 1— (PRQ/NR). From (4) 

PNB(1-FB) u(y-u) 
n=up= . (5) 

(l+l?n) («"!?) G3«+l) 

Now the physical conditions of the problem require 
that the range of u be 0^.u^ + °°. In this range there 
are two domains: 

(I) Tno/TPQ>t]7 i.e., 7 > ?/. This is the domain in which 
the limitation on the DI current at low currents is due 
to difficulty in transporting enough holes across the 
crystal (against recombination) to neutralize electrons. 
We have TJ^U^ rno/rpo so that p, given by (4), remains 
positive. 

(II) Tno/rpo<^, i.e., y<t\. This is the domain in 
which the DI limitation is due to an electron lifetime 
which is too short, the opposite case to (I). We have 
y^u^rj to maintain p, and n, positive. 
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We continue the analysis working closely with the 
formal theory of Appendix A of Lampert4 to facilitate 
comparison. 

Now J=e8(njjLn+piip) if / is the current density, 
8 is the electric field strength and /zn, iip are the carrier 
mobilities. 

Thus, using (4) and (5), 

8= (J/eixnaNR)h(u) 

where 

«(l+i?») (u->n)((3u+l) 
h(u) = . (6) 

J S ( I - F B ) (u+a)(y-u) 

a is the mobility ratio nP/nn-
From the particle conservation equations, 

IJLp(d/dx) (p8) = r= —fjLn(d/dx) (n8), 

we have (d/dx)[_(p—n)8~] = (l+a)r/fj,Py where x is the 
spatial variable along the direction normal to the 
electrodes, with # = 0 at the cathode and x=L at the 
anode. 

Hence, substituting for p, n, r, pR from Eqs. (1), 
(2), (4), and (5). 

J(du/dx) = - [aeNB
2(van)/f(u)^, 

a2(l+yn) (u-r))(pu+l)2 (7) 
f(u) = . 

P(l-FR) u(u+a)2(y-u) 

We now examine the boundary conditions appro
priate to the present problem. As was pointed out by 
Lampert,4 we expect the field to be a minimum at the 
contact which injects the "difficult'' carrier. Thus, for 
case (I), we impose the boundary condition 8=0 at 
x=L, the anode, in agreement with Lampert. However, 
for case (II), we must take the opposite condition, 
8=0 at x=0, the cathode. The condition 8=0 corre
sponds to u=rj, from Eq. (6). Using these boundary 
conditions, we have, from (7), 

1 /-uo 
3i=Ji/r = , Fi(uo)= f(u)du, (8a) 

Fi(uQ) Jn 

(r}^Uo^Tno/Tpo) 

32=J2/J>= 
J uL 

— — , F2(uL)= I f(u)du, (8b) 
FZKUL) JUL 

(rno/rpo^UL^rj). 

Here, the subscripts 1, 2 refer to cases (I), (II) above, 
respectively, Jf = aeNR2(van)L and the $'s are dimen-
sionless currents. u0 and UL are the values of u at x = 0y 

x=L, respectively. 

From (6) and (7), 

, 0 1 = F i / F / = 5 i , G i ( « o ) , G(«o)= / f(u)h(u)du, (9a) 

V2=V2/Vf^322G2{uL), G(uL)= f(u)h(u)du. (9b) 
/ • 

J uL 

Here, Vi, V2 are the relevant potential differences across 
the crystal, V, = L2NR(van)/iJLn and the 'O's are dimen-
sionless voltages. 

4. LOW CURRENT BEHAVIOR OF THE CURRENT-
VOLTAGE CHARACTERISTIC 

We now examine the behavior of "U as $ tends to 
zero. The condition $ = 0 corresponds to poles in Fi(uo) 
and F2(uL) at uo, UL=Tna/TPQ. Thus, g tends to zero 
as ur tends to y=rno/rpo, where u' is either m or UL. 
Expanding f(u) and f(u)h(u) as partial fractions, we 
have 

/ ( « ) = • 

4 i Bx Ci Dx 

A2 B2 
/(«)*(«) = —4 

u u+a (u+a)2 (y—u) 

C2 D2 

u u+a (u+a)2 (u+a)z 

E2 H2 

+ (y-u) (y-u)2 

Now, as ur —> 7, the largest term in F(uf) is the one in 
In (y—u') whilst the largest term in G(uf) is the one in 
(y-u')-1- Now V = gG(u') = G(u')/F(u')2. Thus, as u' 
tends to 7, § tends to zero and *0 tends to 

l / ( 7 - ^ ) D n ( 7 - ^ ) ] 2 . 

and this tends to infinity as ur tends to 7. Thus, when 
0<FR<1, the threshold voltage for D I current flow 
with space-charge neutrality is infinite whereas, when 
FR=\, this threshold is finite.4 Mathematically, this 
difference arises because, when PRO=0 (FR=1), the 
singularity at $ = 0 is of higher order. 

Physically, the difference is best discussed in terms 
of the differences in recombination-center occupancy 
between the two cases. In Lampert's case, as / tends 
to zero the electron occupancy of the centers increases 
at a decreasing rate because PRO=0 and thus the hole 
lifetime decreases at a decreasing rate, tending to 
become constant at \/(V(TP)NR. The electron lifetime is 
tending to infinity as $ tends to zero and pR tends to 
zero. Thus the recombination "barrier" to the holes is 
becoming constant and that for the electrons is van
ishing so that a finite threshold voltage results. In the 
present case, because PRQ>0, the hole lifetime decreases 
at a greater rate than in Lampert's case as g -—» 0 and 
the electron lifetime is not becoming infinite but tending 
to a value l/(v<Tn)pRo. Thus the hole-recombination 
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FIG. 1. The effect of changes in FR on the current-voltage 
characteristics. Solid line: Double injection characteristics: (a) 
FR = 1, (b) FB»0.99, (C) FR^Q.91, (d) FB«0.09. Dashed line: 
SCL characteristics: (i) NRFR(1-FR) = 10u cm-3, (ii) 1012 cm"3. 

"barrier" continues to increase and the electron-
recombination "barrier" does not vanish as g—•> 0. As 
a result, in the present case, the recombination "barrier" 
for electrons as $ —» 0 prevents the neutralizing exist
ence of electrons near the anode. This prevention occurs 
because the electrons cannot traverse the cathode end 
of the crystal without setting up a space charge, which 
is excluded by assumption (1) of the theory. Hence, the 
voltage increases to infinity as the current tends to zero, 
i.e., the negative resistance region continues to infinite 
voltages. 

Of course, if the existence of space charge is allowed, 
the voltage threshold as such will not exist since current 
flow at low currents will be close to the one-carrier 
space-charge-limited (SCL) mechanism considered else
where.6,7 Thus, as suggested previously,5 there is a need 
for a unified theory of injected carrier currents which 
includes space-charge and two-carrier flow and re
combination. This could be carried out by replacing the 
zero on the right-hand side of (3) by— (€/e)(dS/dx) 
(where € is the permittivity of the solid) and carrying 
out the analysis from there. Unfortunately, this presents 
considerable difficulties. Lampert4 has attempted to 
approximate to this unified theory by considering the 
current flow at low currents to be the one-carrier SCL 
mechanism and by investigating where this character
istic intersects the DI characteristic. We also carry out 
this procedure here in the belief that it may be useful. 

The SCL characteristic, below the trap-filled limit, 
with electrons as the injected carrier, is given by7: 

J=Z9evn/Hl+Vn)mV\ 

so that after change of variables, 

g = l9e(v*n)/8etip(l+rin)lU*. 

6 A. Rose, Phys. Rev. 97, 1538 (1955). 
7 M. A. Lampert, Phys. Rev. 103, 1648 (1956). 

This is rearranged, for reasons which will be apparent 
in the next section, so that 

1+VP 9erjV2 

FR 8e»pNRFR(l-FR)rno 

5. HIGH-CURRENT BEHAVIOR 

(10) 

The high-current region of the DI characteristic 
corresponds to small values of F(u') and thus to u! 

close to r? as Eqs. (8) show. If we write w=??+A and 
assume |A|«>? and | A | « ( Y — TJ\, then Eq. (7) ap
proximates to 

a*(l+i7n)G3iH-l)2 

f(u)~MA, M~-

and 

f(u)h(u] 

Hence, 

where 

and thus 

or 

-NA* N=-
P(l-FBMri+a)*(y-v)* 

F(u')=\M\iA'2, G(u') = N$A'*, 

A'=\u'-V\, 

3=9\M\*V2/8N2 

9Kl-FR)\y-v\ 

8(l+i?p) 
(11) 

This is the $~V2 region of the D I characteristic dis
cussed by Lampert in conclusion (c) of his article.4 Its 
similarity to the result for a semiconductor3 arises 
because in this region, the ratio of the two-carrier life
times has become constant. Even though recombination 
is, in this case, via centers, this constancy causes the 
DI current to be controlled in the same way as in a 
semiconductor. If y^>v, and thus for cases well into the 
domain of case (I), Eq. (11) becomes 

$ = [9FRM1+VP)10*. 

If Y«?7, i.e., for case (II), we have 

9/3(1-77*) 9FR 

3^ v2= •-V2. 
8(1+7?.) 8 ( 1 + ^ ) T 

(12) 

(13) 

Comparison of (10) and (12) shows that, for yy>y, 
the existence of a negative-resistance region will require: 

-«1A?. 
efJLpNRTnoFR(l — FR) 

Taking values of the parameters which should be 
typical (e.g., NR= 1017 cm-8, and vP= 3000 cm2 V""1 sec"1 

with r„o=20 yusec or JJLP=15 cm2 V"1 sec"1 with r n 0 = 4 
msec), this inequality becomes 

F * ( l - F * ) » 1 0 - V 
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Thus, for example, if there are no traps (i.e., rj= 1), 
if the centers are less than about 0.5 eV from the 
Fermi level at room-temperature equilibrium, and if 
r?io^>Tpo, this implies that a negative-resistance region 
will exist at this temperature for the parameter values 
chosen. 

For case (II), the low-current mechanism of current 
flow will again be SCL. However, in this case, the in
jected space charge will be positive and the majority 
carriers will be holes. An analogous inequality condition 
for the existence of a negative-resistance region can be 
obtained for this case. 

6. NUMERICAL CALCULATIONS 

In order to obtain a better picture of the DI current-
voltage characteristics between the high- and low-
current limits, numerical calculations have been carried 
out. The procedure followed was perfectly straight
forward. The quantities f(u) and h(u) were computed 
from Eqs. (6) and (7) and integration was carried out 
by Simpsons rule to obtain F(uf) and G{u'). The 
interval for integration was chosen so that the error in 
V was always less than a few percent, this being con
sidered satisfactory in view of the logarithmic display 
of the results. Because the work reported in this article 
was prompted by the results of experimental work on 
CdS,8 the parameters were chosen, in many cases, with 
CdS in mind. In addition, most of the results obtained 
correspond to case (I), relevant to CdS. Computations 
of the D I characteristic were also carried out for FR=1, 
using the analysis of Appendix A of Lampert,4 for 
comparison purposes. In all the following calculations, 
the mobility ratio a was taken as 0.05. 

i i i i i r 

_ L I _J _J L_ 
102 ^ 1 0 4 106 

FIG. 2. The effect of shallow trapping on the characteristics. 
Case (I), (a) FR**0.91, (b) F f i«0.09. 

8 P. N. Keating, Phys. Chem. Solids 24, 1101 (1963). 
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FIG. 3. The effect of the relative effectiveness of hole and electron 
trapping on the injection ratio at one of the contacts. 

6.1 Effect of Changes in FR on the 
Characteristics 

Two DI characteristics obtained by computation 
have already been published5 to demonstrate the effect 
of changes in FR. The characteristics of Fig. 1 show this 
in greater detail. Curve (a) is the characteristic obtained 
for FR=1 from Lampert's theory.4 Curves (b), (c), and 
(d) were computed from the present theory for 
7 ^ = 100/101, FR= 10/11, F B = 1 / 1 1 , respectively. All 
four curves correspond to j3=10~~8, i.e., e0 th=104, and 
77=1. The current is plotted as [_(l+rjp)/FR]$ so that 
the curves coincide in the square-law region. 

The characteristic for FR=1 shows the threshold 
reported by Lampert.4 Although it follows this curve 
at the high-current end of the negative-resistance 
region, the characteristic for FR~0.99 shows very 
different behavior at low currents. I t will be noted that 
the characteristic for FR~0.9l behaves more like the 
FRo^0.09 characteristic than like the FR~Q.99 curve. 
Also shown in Fig. 1 are the SCL characteristics calcu
lated from (10) for e=10-1 0 mks units, ixv= 15 cm 2 /V/ 
sec, rwo=4 msec, typical of CdS; rj is unity again. If we 
assume that the voltage maximum would occur in the 
neighborhood of the intersection of the D I and SCL 
characteristics, then it is plain that, if FR<1, the 
"threshold" can occur at much greater voltages than 
Lampert's Dth-4 Thus, as was reported previously,5 the 
use of Lampert's result in interpreting experimental 
" thresholds" can lead to values of hole lifetime which 
are much too small. This appears to have been the case 
in some earlier work.8,9 

6.2 Effect of Shallow Trapping on Double-
Injection Currents 

The effect of trapping is important because it reduces 
the current flow by reducing the free-carrier densities. 
Moreover, the ratio of the carrier densities is in part 
determined by the relative effectiveness of the two 
kinds of trap as well as in part by recombination 

9 G. A. Marlor and J. Woods, Proc. Phys. Soc. (London) 81, 
1013 (1963). 
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FIG. 4. Double-injection characteristic for (vcrn) = {varp). 

kinetics. The physical arguments of Sec. 2 are modified 
as follows when trapping is present. 

The control of the DI current flow by trapping arises 
from the fact that, if one type of trap contains a large 
number of trapped carriers, these carriers give rise to 
space charge for neutralization of the other carriers 
without directly changing the recombination rate. For 
example, consider a system in which the two low-level 
life-times are equal. If the electron traps are very much 
more effective than the holes (??<^1), the hole transport 
will be the bottleneck to double-injection current flow 
because more free holes than free electrons are required 
to neutralize the trapped negative space charge. Thus, 
the case (I) domain, for example, is characterized by 
Tno/rpoJ>y, rather than T»O/T P O>1. Similarly, the case 
(11) domain corresponds to r no/r po<^. 

The negative-resistance region is again character
ized by an increasing lifetime for the "difficult" carrier. 
However, the lifetime ratio now tends to rj rather than 
unity. This is because, if no further changes in the life
time ratio are to take place, there must be no further 
changes in the occupancy of the centers. Thus all 
further increases in the carrier densities must be dis
tributed between the bands and the traps. Equations 
(12) and (13) indicate that in this high-level region of 
the characteristic, the current depends primarily on the 
trapping of the "difficult" carrier rather than on the 
trapping of the other carrier, if the transport of one is 
appreciably more difficult than that of the other. This 
arises because, even at these high injection levels, the 
DI current is still primarily controlled by the transport 
of the difficult carrier. I t can be seen, for example, in 
Fig. 2, which corresponds to the case (I) domain where 
the current is independent of the electron traps. For 
each of three values of rj, the variation of [.(^+VP)/FR1S 
with V is shown in Fig. 2 for FR~0.91 and FR~0.09. 
In each case y = 104. Below this high-level region, it will 
be noted that the dependence of the characteristic on 
trapping is more complex and includes the effect of the 
electron traps, 

The effect of the ratio of the effectiveness of the hole 
and electron traps on the ratio of the carrier densities 
manifests itself again by influencing the injection ratios 
necessary at the two electrodes. The injection ratio at 
the electrode from which the "difficult" carriers are 
injected is, in fact, directly related to rj since n/p=rj at 
this electrode. This electrode is the most important one 
in ensuring that current flow is volume controlled since 
the electric field is a minimum here. The injection ratio 
at this electrode, y^ is thus given by (l+rj/a)"1 and 
is shown as a function of t] for a = 0.05 in Fig. 3. One 
interesting facet of this result is that, although for a 
case (I) solid one would expect a high-injection ratio to 
be required at the anode (i.e., hole injecting) contact, 
this is not necessarily so. Thus if T\ is greater than about 
0.5, a small injection ratio is required. For large % more 
free electrons are required to neutralize the space change 
due to the trapped holes since the hole traps are more 
effective. Similarly, for a case (II) solid, the injection 
ratio can be large at the cathode if rj is small, i.e., if the 
electron traps are very effective. 

6.3 Other Results 

I t was stated previously5 that in the absence of 
trapping, the requirement for the existence of a negative 
resistance region was not that the capture cross sections 
of the centers for the two carriers must be very different 
but that the low-level lifetimes are very different. The 
negative-resistance region is a consequence of the in
creases in the shorter lifetime which take place as the 
lifetimes equalize. The curve shown in Fig. 4 demon
strates that the capture cross-section ratio is not itself 
important from this point of view. This characteristic 
was calculated for P=(v<rn)/(v<rp) = 1, rno/rpo=102 and 
for negligible trapping (77= 1). I t is interesting to note 
also that current flow only occurs at voltages which are 
greater than "Oth,4 which is 10 in this case; this shows 
again that Vth is an unimportant parameter for FR < 1. 

I0'5 IO"z 10"' /- I IO 

FJG. 5. Doiible-injection characteristic corresponding to case II , 



D O U B L E - I N J E C T I O N C U R R E N T S I N I N S U L A T O R S A1413 

For the sake of completeness, a computation was also 
carried out for values of parameters corresponding to a 
class (II) solid, i.e., for a solid in which the low-level 
hole lifetime is appreciably longer than the corre
sponding electron value, in the absence of trapping. 
The resulting characteristic, for which TJ=1, F=10~ 3 , 
is shown in Fig. 5. Although the values of V involved 
are rather smaller than those involved in the previous 
results, the form of the characteristics is extremely-
similar, as one expects from consideration of the sym
metry present in the problem. 

I. INTRODUCTION 

THE addition of divalent metallic ions to alkali 
halide crystals introduces an equal number of 

positive ion vacancies, in order to maintain charge 
neutrality.1 Below a temperature of ^300°C, each of 
these vacancies is bound to a divalent impurity ion by 
electrostatic attraction. This impurity-vacancy complex 
can be viewed as an electric dipole, since the impurity 
ion has an excess positive charge while the vacancy is 
the center of an excess negative charge. Such a dipole 
can reorient by means of suitable vacancy jumps. 
Several workers1-3 have observed dielectric relaxation 
in doped alkali halide crystals due to the reorientation 
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Note added in proof. K. L. Ashley and A. G. Milnes 
have recently reported [ J . Appl. Phys. 37, 369 (1964)] 
an analysis of the region of the characteristic below, and 
up to, the threshold. This also demonstrates that the 
"threshold voltage" is different if the centers are not 
completely filled at thermal equilibrium. 
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of these dipoles in the presence of an electric field. Most 
experiments measure the dielectric loss arising from the 
fact that a component of the polarization is 90° out of 
phase with an ac electric field.1,2 If this process is a 
simple one, involving only a single relaxation time, this 
loss as a function of frequency co takes the form of the 
well-known Debye peak: 

tanfi = A(o)/r+f/a))-1 , (1) 

where 6 is the "loss angle" by which the polarization 
lags behind an alternating field. Here the constant A is 
the relaxation strength, while f is the relaxation rate (or 
reciprocal relaxation time). The second type of experi
ment observes the relaxation as an exponentially decay
ing polarization current j following the application of 
a dc field E. For the case involving a single relaxation 
time this takes the form3,4 

i = A ( e £ f / 4 i r ) e x p ( - f O , (2) 

4 E. R. von Schweidler, Ann. Physik 24, 711 (1907). 
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Appreciable pairing of divalent metallic impurities with Na+ vacancies occurs in NaCl below 300°C. The 
reorientation of such pairs or complexes had previously been observed under an applied electric field. In the 
present work stress-induced reorientation of pairs in NaCl doped with CaCl2 and MnCl2 has been studied by 
means of internal friction measurements. An internal friction peak attributed to pair reorientation under 
stress was observed near 100°C for a vibration frequency of ̂ 1 0 kc/sec. Data obtained for longitudinal stress 
along both the (100) and (111) crystal directions yields information about the rates of relaxation cor
responding to various mechanical relaxational modes. The data can be interpreted consistently in terms of an 
extension of the theory previously applied to dielectric relaxation, according to which the paired vacancy oc
cupies only nearest-neighbor (n.n.) and next-nearest-neighbor (n.n.n.) sites to the impurity. Relations ob
tained between the relaxation rates and the various possible jump rates for a Na+ ion into the vacancy enable 
each of the specific vacancy jump rates to be determined. It is concluded that the most rapid means for the 
reorientation of an impurity-vacancy pair between two n.n. sites is for the vacancy to move via a n.n.n. site. 
The rate of jump of the impurity ion into the vacancy is found to be a relatively slow process. 


